華僑大學魏展畫再發(fā)NC:效率26.39%!超薄聚合物膜優(yōu)化鈣鈦礦太陽能電池中的空穴提取和離子阻擋發(fā)表時間:2025-01-03 10:30 具有n-i-p結(jié)構(gòu)的鈣鈦礦太陽能電池(PSC)雖然展現(xiàn)出了高效率,但其工作壽命卻受到鈣鈦礦層與摻雜空穴傳輸層(HTL)之間層間離子擴散問題的嚴重制約。這一問題不僅削弱了HTL的導電性能,還加速了鈣鈦礦組分的分解。為解決這一難題,華僑大學的魏展畫教授、謝立強教授與香港城市大學的Alex JEN(任廣禹)教授帶領(lǐng)其團隊創(chuàng)新性地引入了超?。s7納米)的p型聚合物中間層D18,憑借其**的離子阻擋能力,巧妙地將其置于鈣鈦礦層與HTL之間。 實驗結(jié)果表明,D18中間層不僅有效抑制了鋰、甲銨、甲脒及碘離子的層間擴散,還優(yōu)化了鈣鈦礦/HTL界面的能級排列,從而促進了高效的空穴提取。在0.12平方厘米和1.00平方厘米的有效面積下,所制備的PSC分別實現(xiàn)了26.39%(經(jīng)第三方認證為26.17%)和25.02%的效率。尤為值得注意的是,這些器件在**功率點跟蹤條件下連續(xù)運行1100小時后,仍能維持初始效率的95.4%,這標志著n-i-p結(jié)構(gòu)PSC在穩(wěn)定性方面取得了突破性進展。 進一步的分析揭示,D18作為空穴選擇性中間層,在熱應(yīng)力條件下能夠有效阻止離子從鈣鈦礦層(PVSK)向HTL的擴散,從而避免了離子腐蝕導致的HTL性能下降。此外,通過實現(xiàn)PVSK/D18與Spiro之間更優(yōu)化的界面能帶排列,**限度地減少了界面復合損失,進而提升了開路電壓(VOC),降低了傳輸過程中的能量損失,并提高了填充因子(FF)。 綜上所述,魏展畫教授、謝立強教授與Alex JEN教授帶領(lǐng)團隊成功驗證了聚合物D18中間層在PSC中的**性能。該中間層不僅能夠有效抑制層間離子擴散,還能保持高效的空穴傳輸,從而顯著提升了n-i-p結(jié)構(gòu)PSC的穩(wěn)定性。在T95條件下,這些器件展現(xiàn)出了**的工作壽命(超過1100小時),進一步證明了聚合物電荷選擇性中間層在提高鈣鈦礦太陽能電池及組件工作壽命方面的巨大潛力,為其商業(yè)化應(yīng)用奠定了堅實基礎(chǔ)。 Fig. 1: Ion-blocking effect of the D18 membrane. a Device architecture, the structure of D18 polymer, and the detailed ion blocking effect of D18 membrane. b Schematic for investigating the effectiveness of D18 on blocking ion diffusion. c XRD patterns of PbBr2, FAI, and films after spin-casting FAI on PbBr2 or D18-covered PbBr2. d HRTEM image of the enlarged PVSK/D18 interface for FTO/SnO2/PVSK/D18 structure, Spiro was first deposited on the top of FTO/SnO2/PVSK/D18 and then washed off with room-temperature chlorobenzene solvent. Au and Pt are protection layers deposited on the as-prepared film before FIB-cutting. Fig. 2: Stabilization effect of the D18 membrane on perovskite and perovskite/HTL heterostructures. a Illustration of the XRD and reflection spectroscopy tests for the complete solar cell devices during accelerated thermal aging at 85?°C. XRD patterns (b) and reflection spectra (c) of the control and D18 devices before and after aging. d Cross-sectional SEM images of aged control and D18 devices. ToF-SIMS depth profile of I? and FA within the aged control (e) and D18 (f) devices. g Illustration of exposing the aged Spiro surface for KPFM measurement. KPFM images of Spiro of control (h) and D18 (i) devices before and after aging, respectively.++ Fig. 3: Effect of the D18 membrane on improving the charge carrier dynamics and reducing the VOC loss and FF loss of PSCs. PL spectra (a) and TRPL decay (b) of PVSK, PVSK/D18, PVSK/Spiro, and PVSK/D18/Spiro stacks. c Energy level diagram of PVSK, PVSK/D18, and Spiro. d Measured VOC and QFLS of the control and D18 devices. e One sun J-V (lines) and pseudo J-V (symbols) curves of the control and D18 devices. f FF loss analysis of the control and D18 devices. The data points connected by the black dashed line are ideal FF from the Shockley-Queisser (SQ) limit. The data points connected by the red dashed line are the maximum FF without charge transport loss. The data points connected by the red solid line are the measured FF from the devices. Fig. 4: Effect of the D18 membrane on PCE and stability of PSCs. a Reverse and forward J-V scan of the control and D18 devices (0.12?cm2). –R indicates reverse scan and –F indicates forward scan. b Statistical PCE of the control and D18 devices. c Reverse and forward J-V scan of large-area (1?cm2) control and D18 devices. d Operational stability of the control and D18 devices. e Thermal stability of the control and D18 devices under 85?°C. f Dark shelf stability of the control and D18 devices. All stability tests were based on devices without encapsulation. 文獻信息: Lina Shen, Peiquan Song, Kui Jiang, Lingfang Zheng, Jianhang Qiu, Fangyao Li, Yu Huang, Jinxin Yang, Chengbo Tian, Alex. K.-Y. Jen, Liqiang Xie & Zhanhua Wei https://www.nature.com/articles/s41467-024-55329-0#Fig1 - 產(chǎn)品咨詢及購買請聯(lián)系我們 - |