巨力光電(北京)科技有限公司

西湖大學王睿組Acc. Mater. Res:有機 Amidiniums在鈣鈦礦光伏材料中的作用

發(fā)表時間:2025-01-02 10:50

標圖.png

主要內(nèi)容:

清潔能源作為可持續(xù)發(fā)展的基石,在光伏技術中,尤其是基于有機-無機鉛鹵化物鈣鈦礦(OLHPs)材料的太陽能電池,近年來取得了顯著的突破性進展。OLHPs的化學式為ABX3,其中A位陽離子的選擇對于鈣鈦礦結構的穩(wěn)定性和整體光電性能具有至關重要的影響。隨著研究的不斷深入,超大尺寸Amidiniums(作為一類特殊的A位陽離子)作為添加劑或鈍化劑,在OLHPs中展現(xiàn)出了其獨特且不可或缺的作用。

在本文中,西湖大學工學院 王睿教授及其團隊深入探討了Amidiniums在OLHPs研究中的關鍵進展。這些進展不僅從熱力學和動力學的角度揭示了Amidiniums對成核與結晶過程的精細調(diào)控機制,還深入分析了其對體相和界面電子態(tài)的調(diào)制效應。具體而言,Amidiniums通過優(yōu)化OLHPs的成核過程,顯著提升了結晶質(zhì)量,并深刻影響了電子構型。同時,它們還能通過應變誘導效應**調(diào)控體相電子態(tài),并通過誘導形成低維相和多功能基團來調(diào)節(jié)表面電子態(tài),從而有效消除了表面電勢的不均勻性,進一步提高了太陽能電池的光電轉(zhuǎn)換效率和長期穩(wěn)定性。

此外,該研究團隊還通過對比分析不同厚度的鈣鈦礦薄膜,揭示了應力、電導率、載流子遷移率和濃度之間的復雜關系,并提出了一種創(chuàng)新的應變釋放策略(SRS)來有效減輕厚膜中的應變,進而提升器件性能。引入大尺寸Amidiniums不僅通過晶格膨脹顯著改善了熱載流子的弛豫過程,還顯著提升了太陽能電池的光電轉(zhuǎn)換效率。在界面工程方面,Amidiniums鈍化技術成功形成了特殊的低維相,有效解決了由表面電勢不均勻引起的降解問題,從而進一步提升了PSC(鈣鈦礦太陽能電池)的性能。同時,具有特定功能基的鈍化層還有效抑制了外來離子的注入,為PSC的長期穩(wěn)定性提供了有力保障。

綜上所述,Amidiniums在OLHPs研究中的作用不容忽視。它們在增強鈣鈦礦結晶動力學、調(diào)節(jié)電子態(tài)以及提高PSC效率和穩(wěn)定性方面發(fā)揮著至關重要的作用。隨著鈣鈦礦太陽能電池逐步邁向商業(yè)化應用,Amidiniums有望在制備大面積、均勻且高質(zhì)量的鈣鈦礦薄膜方面發(fā)揮關鍵作用,為解決太陽能電池和組件的長期運行不穩(wěn)定性挑戰(zhàn)提供新的解決方案。未來,新Amidiniums發(fā)現(xiàn)或新穎應用的出現(xiàn),將進一步推動OLHPs及其相關光電器件的蓬勃發(fā)展,為清潔能源的廣泛應用貢獻力量。


1.jpeg2.jpeg


Figure 1. (a) History of record PSCs performance and main A cation compositions that were used. (1,2) (b) Molecular structures of the reported organic ammoniums.


3.jpeg


Figure 2. (a) Schematic representation illustrating the thermodynamic driving forces and kinetics underlying the oriented nucleation of perovskite films. (b) In situ GIXRD analysis of perovskite films fabricated without PAD (top) and with PAD (bottom), highlighting the transition through the nucleation and growth stages, where N++0 marks the nucleation initiation, Ns represents the nucleation stage, and G corresponds to the growth stage. The intensity is represented on a black-red color scale (arbitrary units). (c) Azimuthal angle evolution during the nucleation stage, comparing films without PAD (top) and with PAD (bottom), illustrating the differences in crystallographic orientation. (d) Photoluminescence (PL) spectra evolution during nucleation for films without PAD (top) and with PAD (bottom), demonstrating enhanced structural uniformity with PAD. Reproduced with permission from ref +++++(9). Copyright 2023 The Author(s), under exclusive license to Springer Nature Limited.


4.jpeg


Figure 3. (a) TRPL and (b) PCEs of the perovskite films with different thicknesses. (c) Conductivity of SRS, 2.0 M, and 1.4 M perovskite films. GIWAXS scattering profiles of 1.4 M (d), 2.0 M (e), and SRS-2.0 M (f) perovskite films with the increasing angle of incident beam. Reproduced with permission from ref (12). Copyright 2024 The Authors.


5.jpeg

Figure 4. (a) Schematic illustration of the hot phonon bottleneck effect, highlighting the accumulation of hot phonons and their influence on carrier cooling dynamics. (b) Carrier temperatures for perovskites doped with FA, higher BZM, and PLM concentrations, extracted using the Boltzmann model, revealing variations in carrier cooling efficiency among the compositions. (c) Intrinsic electron–phonon scattering times for these perovskite materials, illustrating differences in electron–phonon coupling strength and its impact on carrier relaxation processes. Reproduced with permission from ref +++(13). Copyright 2024 AIP Publishing LLC.


6.jpeg

Figure 5. (a) Locations of Li cations above and below the perovskite surface, as determined by first-principles calculations, showing the effect of the MSBZM layer on cation distribution. (b) Calculated energy barrier for Li migration, illustrating the significant increase in migration resistance with the MSBZM layer. (c) Secondary ion mass spectrometry (SIMS) analysis of PSCs without and with MSBZM treatment, highlighting differences in ion migration. (d) Depth profiles of Li ions in control and MSBZM-treated perovskite films, demonstrating reduced Li-ion migration in treated films. (e) PCE tracking of unencapsulated control and MSBZM-treated devices at 60 ± 5 °C in a nitrogen-filled glovebox, with error bars indicating the standard deviation across four devices per condition. (f) MPP tracking under 1-sun illumination at 50 ± 5 °C, showing the improved stability of MSBZM-treated devices. Reproduced with permission from ref +++++++(17). Copyright 2024 American Chemical Society.


表1.png

文獻信息:
The Role of Organic Amidiniums in Perovskite Photovoltaics
  • Jiazhe Xu,

  • Pengju Shi,

  • Jingjing Xue,

  • Rui Wang

https://pubs.acs.org/doi/10.1021/accountsmr.4c00288


產(chǎn)品鏈接-AAA太陽光模擬器-單燈.png產(chǎn)品鏈接-paios.png產(chǎn)品鏈接-LiABUIAABUIABAEGAAgofqVugYo9IeuSTDaDTiwAwBAEGAAgofqVugYo9IeuSTDaDTiwAwABUIABAEGAAgofqVugYo9IeuS


- 產(chǎn)品咨詢及購買請聯(lián)系我們 -

分享到:
巨力光電(北京)科技有限公司
聯(lián)系郵箱 info@giantforce.cn
聯(lián)系電話
北京分機1:010-57103010
北京分機2:010-57299942
北京公司通訊地址:北京市通州區(qū)新華西街58號院萬達廣場B座1311
武漢公司通訊地址:武漢市洪山區(qū)關山街道虎泉街永利國際2714
|     京ICP備19048123號-2        ?2023 巨力光電(北京)科技有限公司 版權所有                   友情鏈接:化工儀器網(wǎng)      儀器信息網(wǎng)  
北京李經(jīng)理
18911365393
北京劉經(jīng)理
18911365396
武漢劉經(jīng)理
18911365395